“外星植物”的诡异色彩(组图)
2008-05-09 22:47:00 来源:环球科学 浏览次数:
捕捉阳光
对于大多数地球生物,光合作用实在太重要了:植物或微生物吸收阳光,通过光合作用合成有机分子,释放氧气,其他生物必须直接或间接地利用光合作用的产物,才能维持生命活动。植物或微生物究竟是如何捕捉阳光,将太阳能转化为化学能的?
要了解光合作用在其他行星上是怎么发生的,我们首先得弄清楚地球上光合作用的具体机制。在地球表面,阳光的能谱(energyspectrum)会在蓝色和绿色之间达到峰值,这让科学家一直大感困惑:为什么植物会反射绿色光线,浪费掉阳光中最易得到的部分?(物体反射某种颜色的光线,就会呈现某种颜色。)原因就在于,光合作用并不依赖阳光的总能量,而与单个光子含有的能量以及光线中的光子数量有关。
蓝色光子携带的能量比红色光子多,而太阳发出的红色光子数量则要多一些。植物因为单个光子的能量优势而吸收蓝色光子,因为数量优势而吸收红色光子。相对而言,绿色光子在能量和数量上都不占优势,植物就很少吸收它们。
将一个碳原子固定到一个简单的糖分子内,是光合作用的基本过程。这个过程要顺利完成,至少需要8个光子。4个光子会“撕开”两个水分子的4条氢氧键(一个光子撕开一条),释放4个自由电子,生成1个氧分子;同时,这4个光子还得分别匹配至少1个额外光子,以参加下一步反应:生成糖分子。而且,每个光子的能量不能太低。
植物捕获阳光的方式堪称自然界的奇迹。以叶绿素为代表的光合色素宛如一个天线阵,其中每根“天线”都可以捕获某种波长的光子:叶绿素主要吸收红色和蓝色光子,类胡萝卜素(正是这种色素使秋天的树叶呈现鲜艳的红色和黄色)也吸收蓝色光子,但两种色素吸收的蓝色光子并不完全相同。所有光子的能量都会被输送到位于反应中心的特殊叶绿素分子上??在这里,水分子被分解,释放出氧气。
色素分子选择何种颜色的光子,取决于能量的输送方式。只有获得一个红色光子,或以其他形式得到与红色光子相当的能量,反应中心的分子复合体才能启动化学反应。为了充分利用蓝色光子,色素分子们必须相互协作,降低蓝色光子的能量(把它变为红色),正如一系列变压器,将高压线中的100,000伏电压降低到220伏,才能为家用电器供电。一个蓝色光子击中一个吸收蓝光的色素分子,激发分子中的一个电子时,“降压”反应便开始了;当受到激发的电子回到初始能量状态,蕴藏其中的能量便会释放出去。由于在电子恢复能量状态的过程中,会发生振动并产生热量,释放的能量总是小于当初所吸收的能量。
电子并非以光子的形式释放能量,而是利用电反应,将能量传递给另一个色素分子。这个色素分子会进一步降低蓝色光子中的能量,直到高能的蓝色光子被转换为低能状态的红色光子。利用同样的方式,这一系列色素也能将青色、绿色或黄色光子转换成红色光子。流程终端的反应中心只能吸收能量最低的光子,而在地球表面,红色光子是可见光波段中数量最多、能量最低的光子。
但对水生光合生物来说,红色光子的数量不一定是最充足的。水、水中的各种物质和水生生物本身,都有滤光作用,因此光线组成会随水深而变化。在海洋里,生活在不同深度的生物会拥有不同的体色。浅水层生物的色素适合吸收穿过水层的光子,藻类和蓝细菌就可以利用藻胆素(phycobilins),吸收绿光和黄光;不产氧细菌(Anoxygenicbacteria)的细菌叶绿素则可以吸收红外和近红外光??只有这两种光线能穿透厚厚的水层,到达黑暗的水底。
一般说来,在光线较暗的环境中,生物体的生长速度都很慢,因为它们要付出更多的努力,才能捕捉到那少得可怜的光线。在光线充足的地表,植物没有必要制造多余的色素,因此它们可以“挑剔”地选择吸收某种光线。这样的进化原则可能也适用于其他行星。
正如水生生物适应水的滤光作用一样,陆生生物也适应了大气的滤光作用。在地球大气层顶端,黄色光子(波长为560~590纳米)的数量最多。随着海拔降低,波长较长的光子逐渐减少,短波长光子更是急剧减少。阳光透过上层大气时,水蒸气吸收波长大于700纳米的红外线,氧分子吸收波长为687和761纳米的光线(即氧气的吸收谱线)。在平流层,臭氧(O3)会吸收大量的紫外线以及少量可见光。
总而言之,大气层设置了一系列“窗户”,阳光要穿过这些窗户,才能抵达地面。“窗户”为可见光波段设定了范围:波长较短的称为蓝色端,是由阳光中的短波长光子数量锐减,以及臭氧层大量吸收紫外线而形成的;波长较长的则被称为红色端,由氧气的吸收谱线形成。由于臭氧对可见光区内的多种光线都有吸收作用,各种光子的数量也发生了变化,原本数量最多的是黄色光子,现在则为红色光子(波长约为685纳米)。
在很大程度上,植物的吸收光谱由氧气决定,而这些氧气又是植物释放出来的。最早的光合生物在地球上出现时,大气中氧气浓度极低,因此这些生物用于捕捉阳光的色素,必然不同于叶绿素(如果是叶绿素,植物光合作用就会释放大量氧气)。随着时间流逝,光合作用改变了大气组成,叶绿素也就成为了植物的最佳选择。
根据化石记录,科学家推断光合作用产生于距今34亿年前。不过也有一些化石显示,光合作用可能在更早以前就出现了。早期光合生物只能在水下生存,因为水是很好的溶剂,有利于生化反应的进行,而且它还能为生物遮挡阳光中的紫外线。在臭氧层还未形成的时候,水对生物的这种保护作用至关重要。最早的光合生物是吸收红外线的水下细菌,它们体内化学反应的主要反应物是氢、硫化氢或铁,由于水没有参与反应,这些细菌不会释放氧气。到27亿年前,能利用光合作用制造氧气的蓝细菌(cyanobacteria)出现了,地球大气层中的氧气浓度逐渐升高,臭氧层也开始形成??这给红藻和褐藻的出现创造了条件。随着臭氧层的日渐完善,紫外线对浅水层生物不再构成威胁时,绿藻便进化出来,它们没有藻胆素,更适应阳光下的生活。又过了20亿年,氧气浓度进一步提高,绿藻终于进化成为陆生植物。
自此以后,植物数量便开始爆炸式增长,植株个体也越来越复杂??从地表的苔藓和地钱,到直冲云霄的参天大树,因为个体越高大,越利于捕捉阳光,也能更好地适应特殊气候。由于拥有圆锥形树冠,即便在太阳照射角度较低的高海拔地区,松树也能获得充足的阳光;利用花青素(anthocyanin),喜阴植物还可以抵御强烈的阳光。绿色植物的叶绿素因大气成分的改变而出现,反过来又有助于维持目前的大气组成,这就形成了一个良性循环,使地球的绿色得以维持。也许,下一步进化会使树荫下的某个物种具有某种优势,让它们能利用藻胆素吸收绿光和黄光,不过处于高大的植物仍倾向于保持绿色。
对于大多数地球生物,光合作用实在太重要了:植物或微生物吸收阳光,通过光合作用合成有机分子,释放氧气,其他生物必须直接或间接地利用光合作用的产物,才能维持生命活动。植物或微生物究竟是如何捕捉阳光,将太阳能转化为化学能的?
要了解光合作用在其他行星上是怎么发生的,我们首先得弄清楚地球上光合作用的具体机制。在地球表面,阳光的能谱(energyspectrum)会在蓝色和绿色之间达到峰值,这让科学家一直大感困惑:为什么植物会反射绿色光线,浪费掉阳光中最易得到的部分?(物体反射某种颜色的光线,就会呈现某种颜色。)原因就在于,光合作用并不依赖阳光的总能量,而与单个光子含有的能量以及光线中的光子数量有关。
蓝色光子携带的能量比红色光子多,而太阳发出的红色光子数量则要多一些。植物因为单个光子的能量优势而吸收蓝色光子,因为数量优势而吸收红色光子。相对而言,绿色光子在能量和数量上都不占优势,植物就很少吸收它们。
将一个碳原子固定到一个简单的糖分子内,是光合作用的基本过程。这个过程要顺利完成,至少需要8个光子。4个光子会“撕开”两个水分子的4条氢氧键(一个光子撕开一条),释放4个自由电子,生成1个氧分子;同时,这4个光子还得分别匹配至少1个额外光子,以参加下一步反应:生成糖分子。而且,每个光子的能量不能太低。
植物捕获阳光的方式堪称自然界的奇迹。以叶绿素为代表的光合色素宛如一个天线阵,其中每根“天线”都可以捕获某种波长的光子:叶绿素主要吸收红色和蓝色光子,类胡萝卜素(正是这种色素使秋天的树叶呈现鲜艳的红色和黄色)也吸收蓝色光子,但两种色素吸收的蓝色光子并不完全相同。所有光子的能量都会被输送到位于反应中心的特殊叶绿素分子上??在这里,水分子被分解,释放出氧气。
色素分子选择何种颜色的光子,取决于能量的输送方式。只有获得一个红色光子,或以其他形式得到与红色光子相当的能量,反应中心的分子复合体才能启动化学反应。为了充分利用蓝色光子,色素分子们必须相互协作,降低蓝色光子的能量(把它变为红色),正如一系列变压器,将高压线中的100,000伏电压降低到220伏,才能为家用电器供电。一个蓝色光子击中一个吸收蓝光的色素分子,激发分子中的一个电子时,“降压”反应便开始了;当受到激发的电子回到初始能量状态,蕴藏其中的能量便会释放出去。由于在电子恢复能量状态的过程中,会发生振动并产生热量,释放的能量总是小于当初所吸收的能量。
电子并非以光子的形式释放能量,而是利用电反应,将能量传递给另一个色素分子。这个色素分子会进一步降低蓝色光子中的能量,直到高能的蓝色光子被转换为低能状态的红色光子。利用同样的方式,这一系列色素也能将青色、绿色或黄色光子转换成红色光子。流程终端的反应中心只能吸收能量最低的光子,而在地球表面,红色光子是可见光波段中数量最多、能量最低的光子。
但对水生光合生物来说,红色光子的数量不一定是最充足的。水、水中的各种物质和水生生物本身,都有滤光作用,因此光线组成会随水深而变化。在海洋里,生活在不同深度的生物会拥有不同的体色。浅水层生物的色素适合吸收穿过水层的光子,藻类和蓝细菌就可以利用藻胆素(phycobilins),吸收绿光和黄光;不产氧细菌(Anoxygenicbacteria)的细菌叶绿素则可以吸收红外和近红外光??只有这两种光线能穿透厚厚的水层,到达黑暗的水底。
一般说来,在光线较暗的环境中,生物体的生长速度都很慢,因为它们要付出更多的努力,才能捕捉到那少得可怜的光线。在光线充足的地表,植物没有必要制造多余的色素,因此它们可以“挑剔”地选择吸收某种光线。这样的进化原则可能也适用于其他行星。
正如水生生物适应水的滤光作用一样,陆生生物也适应了大气的滤光作用。在地球大气层顶端,黄色光子(波长为560~590纳米)的数量最多。随着海拔降低,波长较长的光子逐渐减少,短波长光子更是急剧减少。阳光透过上层大气时,水蒸气吸收波长大于700纳米的红外线,氧分子吸收波长为687和761纳米的光线(即氧气的吸收谱线)。在平流层,臭氧(O3)会吸收大量的紫外线以及少量可见光。
总而言之,大气层设置了一系列“窗户”,阳光要穿过这些窗户,才能抵达地面。“窗户”为可见光波段设定了范围:波长较短的称为蓝色端,是由阳光中的短波长光子数量锐减,以及臭氧层大量吸收紫外线而形成的;波长较长的则被称为红色端,由氧气的吸收谱线形成。由于臭氧对可见光区内的多种光线都有吸收作用,各种光子的数量也发生了变化,原本数量最多的是黄色光子,现在则为红色光子(波长约为685纳米)。
在很大程度上,植物的吸收光谱由氧气决定,而这些氧气又是植物释放出来的。最早的光合生物在地球上出现时,大气中氧气浓度极低,因此这些生物用于捕捉阳光的色素,必然不同于叶绿素(如果是叶绿素,植物光合作用就会释放大量氧气)。随着时间流逝,光合作用改变了大气组成,叶绿素也就成为了植物的最佳选择。
根据化石记录,科学家推断光合作用产生于距今34亿年前。不过也有一些化石显示,光合作用可能在更早以前就出现了。早期光合生物只能在水下生存,因为水是很好的溶剂,有利于生化反应的进行,而且它还能为生物遮挡阳光中的紫外线。在臭氧层还未形成的时候,水对生物的这种保护作用至关重要。最早的光合生物是吸收红外线的水下细菌,它们体内化学反应的主要反应物是氢、硫化氢或铁,由于水没有参与反应,这些细菌不会释放氧气。到27亿年前,能利用光合作用制造氧气的蓝细菌(cyanobacteria)出现了,地球大气层中的氧气浓度逐渐升高,臭氧层也开始形成??这给红藻和褐藻的出现创造了条件。随着臭氧层的日渐完善,紫外线对浅水层生物不再构成威胁时,绿藻便进化出来,它们没有藻胆素,更适应阳光下的生活。又过了20亿年,氧气浓度进一步提高,绿藻终于进化成为陆生植物。
自此以后,植物数量便开始爆炸式增长,植株个体也越来越复杂??从地表的苔藓和地钱,到直冲云霄的参天大树,因为个体越高大,越利于捕捉阳光,也能更好地适应特殊气候。由于拥有圆锥形树冠,即便在太阳照射角度较低的高海拔地区,松树也能获得充足的阳光;利用花青素(anthocyanin),喜阴植物还可以抵御强烈的阳光。绿色植物的叶绿素因大气成分的改变而出现,反过来又有助于维持目前的大气组成,这就形成了一个良性循环,使地球的绿色得以维持。也许,下一步进化会使树荫下的某个物种具有某种优势,让它们能利用藻胆素吸收绿光和黄光,不过处于高大的植物仍倾向于保持绿色。
凡注明“风景园林网”的所有文章、项目案例等内容,版权归属本网,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权者,应在授权范围内使用,并注明“来源:风景园林网”。违反上述声明者,本网将追究其相关法律责任。
相关阅读
辽宁沈阳:世界最大泵道公园开园
沈阳国际泵道公园总投资约1亿元,总占地面积4.58万平方米,其中核心泵道场地面积约8000平方米,共设置平地练习区、入门波浪道、小型初级道、大型初级道、标准泵道、腾跃道、自由式场地、碗池共9个赛道【详细】
京城最大绿肺温榆河公园18条道路“瘦身曲化”
在京城最大“绿肺”——温榆河公园,18条市政道路眼下正开展设计建设。近日,由北京城市规划院、园林古建院、市水利设计院、弘都院、林业大学等专业团队组建的规划技术工作营,已经完成了【详细】
《杭州市湿地保护条例》施行
《杭州市湿地保护条例》今年5月1日起施行。浙江省杭州市近日召开新闻发布会,介绍《杭州市湿地保护条例》制定实施的有关情况,提出将扎实推进湿地保护和修复,全力推进国际湿地城市创建【详细】
同济大学风景园林专业女生留学归来后当厨师
有人问小迪,985毕业做厨师不会感觉亏了吗?小迪说“标签也许可以带给人暂时的光环,但它不该定义你。”小迪说她喜欢做料理,因为看到吃了自己做的食物感到幸福的食客会觉得很幸福【详细】